

Commercial Condensing Units Series

CCU 380 to 1500 MBH (32 to 125 TR)

Commercial Condensing Unit With Tropical Hermetic

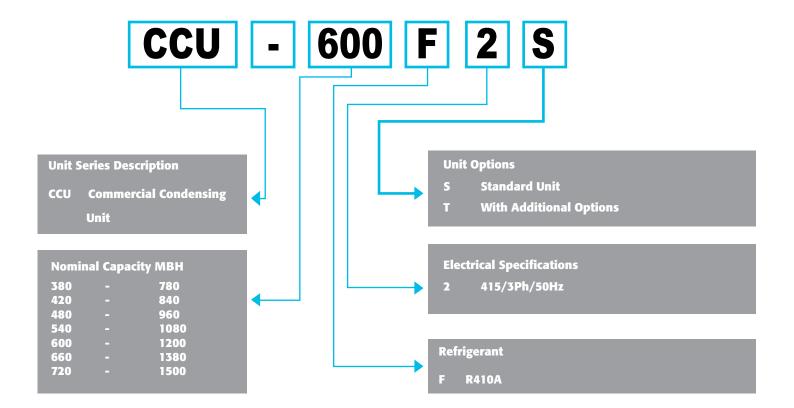
Compressor

50 Hz

Features / Benefits

- Painted electro-static powder coat, zinc coated steel panels provide additional protection against rushing and discoloration in areas with high UV factor.
- Compressors are hermetically sealed, scroll type provided with crankcase heater, internal pressure relief valve and with internal motor protector for safe operation.
- Condenser air fan is of the propeller type, aluminum blade with a direct drive motor upward discharge and provided with fan grille
- Condenser motors are totally enclosed air-over type with class
 F insulation with permanently lubricated bearing and automatic thermal protection.
- Condenser coils are built up of ripple finned seamless copper tubes and mechanically bonded to scientifically designed pre coated aluminum fins.
- Condenser Coil guard to protect the condenser coil from physical damage.
- Minimum of two refrigerant independent circuits which provide efficient part load.

The new series of Commercial Condensing Units air conditioner are designed and manufactured to provide comfort cooling for commercial and industrial applications with the optimum performance, high efficiency, reliability, ease of service & maintenance and capable to operate at extremely ambient conditions up to 125°F


Table of Contents and the contents and t	
NOMENCLATURE	2
STANDARD SPECIFICATIONS	3
MICROPROCESSOR BASED CONTROLLER	4
OPTIONAL SPECIFICATIONS	4
SELECTION PROCEDURE	5
GENERAL DATA	6
PERFORMANCE DATA TABLES	8
RECOMMENDED SUCTION AND LIQUID LINE SIZES	11
UNIT ELECTRICAL DATA	12
UNIT DIMENSIONS	13
INSTALLATION CLEARANCE	17
RIGGING INSTRUCTIONS	18
TYPICAL WIRING DIAGRAMS	19
FIELD CONTROL WIRING	21
LOAD DISTRIBUTION	22
ABOUT RIC	25

OTHER COOLEX PRODUCTS OF STORE STORE

COOLEX DISTRIBUTORS

- 1. Air Cooled Screw Water Chillers
- 2. Air Cooled Scroll Water Chillers
- 3. Air Handling Units
- 4. **Ducted Split Units**
- 5. Concealed Split Units
- 6. Fan Coil Units

General

- The Commercial Condensing Units (CCU) are factory assembled, internally wired, piping connections terminated with suction and liquid line isolation valve. It shall be capable to operate at extremely ambient conditions up to 125°F.
- The units consists of scroll compressors, condenser coil, fans, electrical components, refrigerant piping and enclosing cabinet in one piece.
- The units are rated and tested in accordance with AHRI 365 standard.

Unit Casing

Panels are fabricated from hot dipped G90, Zinc coating and zero spangle galvanized steel, oven-baked powder coated. The unit is provided with an integral weather resistant control panel for outdoor application. Panels and access doors are provided for inspection and access for all internal parts.

Compressor

The compressors are hermetic scroll type provided with crankcase heater, internal pressure relief valve which provides high pressure protection to the refrigerant system and rubber vibration isolators for quiet and efficient operation. The compressors are equipped with internal motor protector for safe operation. The compressors are built to NF, VPE, CSA, & UL certification.

Condenser Coils

The coils are built up of ripple finned seamless copper tubes and mechanically bonded to scientifically designed pre coated aluminum louvered fins. The assembled coils are factory leak tested under water at a pressure of 700 psig for quality and leak free units.

Condenser Fans

Condenser air fan is of the propeller type, aluminum blade with a direct drive motor upward discharge and provided with fan grille mounted in casing.

Condenser Fan Motor

Motors are totally enclosed air-over type with class F insulation for weather protection with permanently lubricated bearings and automatic thermal protection.

Condenser Coil Guard

Protect the condenser coil from physical damage.

Refrigerant Circuit

CCU series comes complete, as standard, with properly sized refrigerant lines including suction and liquid isolation valve, sight glass, filter drier, automatic high and lowpressure switch using R410A Refrigerant.

Microprocessor Controller

To achieve precise control and safety functions of the condensing units.

Control Panel

The control panel enclosure is fabricated out of heavy gauge sheet steel powder coated bake finished. Internal power and control wiring is neatly routed, properly anchored and all wires are identified with cable markers as per NEC standard applicable to HVAC units. Major components used in the control panel are UL approved. External overload relay will be provided for compressor.

MICROPROCESSOR BASED CONTROLLER OF CORPORT O

The Commercial Condensing Units (CCU) are provided with technologically advanced Microprocessor based controller, incorporating the following benefits and features:

- Anti-recycling timing device
- Compressor lock out function
- Balance loading of compressors
- Compressors lead-lag operation
- Pump down option
- Fault diagnostics
- Indicator lights for high & low pressure safety

OPTIONAL SPECIFICATIONS OF COORS OF COORS

Construction

- Anti-corrossion coating for coils
- Copper fins

Electrical

- Compressor circuit breaker
- Condenser fan motor circuit breaker
- External overload for condenser fan motor
- Mild ambient kit
- Anti ice thermostat
- Wi-Fi Thermostat
- Modbus connectivity

Refrigeration

- Pump down kit
- Hot gas bypass kit
- High & Low Pressure gauges
- Oil Pressure gauges
- Adjustable Low / High Pressure switch
- Discharge line muffler
- Rotalock valve for compressor
- Replaceable filter drier with mechanical shut-off valve
- Semi Hermetic Compressor

Typical Thermostat (Optional)

SELECTION PROCEDURE

The below example illustrates the selection procedure to assist using this catalog to select the appropriate CCU unit that meets the design requirements.

Example:

Design requirements

•	Total cooling capacity	773	[MBH]
•	Condenser ambient temperature	95	[°F]
•	Saturated suction temperature	50	[°F]
•	Altitude	2000	[ft]
•	Power supply	415V /3Ph /5	0Hz

Altitude [ft]	Correction factor
Sea level	1
1000	0.996
2000	0.990
3000	0.984
4000	0.980
5000	0.974
6000	0.965
7000	0.960

*Using the correction factor table at the specified altitude, thereby the required capacity will be:

Corrected capacity = Required capacity

/corr. factor

Corrected total capacity = 773 [MBH]/0.99

= 776.1 MBH

From the cooling capacity at performance data tables (page 9), the closest selection model to the required capacity is CCU-780. From the performance table:

Total cooling capacity = 780.55 [MBH]

To calculate Total Heat Rejection Capacity

Total Heat Rejection Capacity = Total cooling capacity + (3.41 x Pl)

 $= 780.55 + (3.41 \times 51.3)$

= 955.483 MBH

GENERAL DATA OF SAME O

M	odel		CCU-380	CCU-420	CCU-480	CCU-540	CCU-600	CCU-660	CCU-720			
Cooling Capacity	мвн		380.1	420.6	490.4	540.6	600.3	660.4	720.5			
(Nominal)	KW		111.4	123.3	143.7	158.5	175.9	193.5	211.2			
Power Supply	V / Ph / Hz				4	15 / 3Ph / 50H	z					
	Туре					Hermetic Scroll						
Compressor	Quantity		2									
	Refrigerant		R410A									
	Refrigerant circuits		2 4									
	Туре			Propeller								
	Diameter, mm		762		80	00	70	52				
Condenser Fan	No. of fans			4								
	Motor Enclosure/Ins Class				Totally Er	ıclosed Air Ove	r, Class F					
	Nominal HP x Qty		1.5 x 4 2 x 4 1.5 x 6									
	Туре		Enhanced Aluminum Fins & Inner Grooved Copper Tubes									
Condenser Coil	Rows - FPI		2-14 3-14									
	Total Face area	ft²			79.2			11	8.8			
High Pressure	Open (Psig)					650 ±15						
Switch	Close (Psig)					500 ±22						
Low Pressure	Open (Psig)					50 ±7						
Switch	Close (Psig)					90 ±7						
Refrigerant Pipes	Suction Line (in)					1-1/8						
Reinigerant Tipes	Liquid Line (in)		5/8									
Weight	kg		1130	1250	1280	1300	1350	1760	1780			

Note:

- 1. Cooling capacities are based on 95°F Condensing air temperature and 50°F Saturated suction temperarture.
- 2. The unit is factory supplied with full refrigerant charge.
- 3. The above data maybe changed without prior notice due to continous improvement in quality and performance.

М	odel		CCU-780	CCU-840	CCU-960	CCU-1080	CCU-1200	CCU-1380	CCU-1500			
Cooling Capacity	мвн		780.6	840.4	980.8	1,080.3	1,200.1	1,380.9	1,504.3			
(Nominal)	kw		228.8	246.3	287.4	316.6	351.7	404.7	440.9			
Power Supply	V / Ph / Hz				4	115 / 3Ph / 50H	z					
	Туре		Hermetic Scroll									
Compressor	Quantity		4									
Compressor	Refrigerant		R410A									
	Refrigerant circuits		4									
	Туре		Propeller									
	Diameter, mm	800	76	52		80	00					
Condenser Fan	No. of fans	No. of fans			6							
	Motor Enclosure/Ins Cla			Totally E	nclosed Air Ove	r, Class F						
	Nominal HP x Qty		2.0 x 6	1.5 x 8 2.0 x 8								
	Туре		Enhanced Aluminum Fins & Inner Grooved Copper Tubes									
Condenser Coil	Rows - FPI		3-14 4-16									
	Total Face area	ft²	118.8			158.4						
High Pressure	Open (Psig)					650 ±15						
Switch	Close (Psig)					500 ±22						
Low Pressure	Open (Psig)					50 ±7						
Switch	Close (Psig)					90 ±7						
Refrigerant Pipes	Suction Line (in)				1-3	5/8			1-5/8			
nomgenine ripes	Liquid Line (in)		7/8									
Weight	kg		1850	2350	2500	2550	2650	2800	2900			

Note:

- 1. Cooling capacities are based on 95°F Condensing air temperature and 50°F Saturated suction temperarture.
- 2. The unit is factory supplied with full refrigerant charge.
- 3. The above data maybe changed without prior notice due to continous improvement in quality and performance.

PERFORMANCE DATA TABLES

						Conde	nser Amb	ient Temp	erature [º	F]			
Model			95			115			118.4			125	
	SST (°F)	TC (Btu/hr)	PI (KW)	CT (°F)	TC (Btu/hr)	PI (KW)	CT (°F)	TC (Btu/hr)	PI (KW)	CT (°F)	TC (Btu/hr)	PI (KW)	CT (°F)
	45	349,971	22.8	115.3	303,417	28.1	133.6	295,196	29.1	136.6	279,058	31.1	142.2
0	46	355,865	22.9	115.6	308,542	28.2	133.9	300,208	29.2	136.8	283,805	31.2	142.4
-38	47	361,828	23.0	115.9	313,723	28.3	134.1	305,274	29.3	137.1	288,600	31.3	142.7
CCU-380	48	367,859	23.1	116.2	318,961	28.4	134.4	310,396	29.4	137.3	293,446	31.4	143.0
	49	373,959	23.2	116.5	324,256	28.5	134.7	315,574	29.5	137.6	298,342	31.5	143.2
	50	380,127	23.3	116.9	329,609	28.6	134.9	320,808	29.6	137.9	303,288	31.6	143.5
	45	386,872	26.0	115.7	343,195	32.2	134.1	334,338	33.4	137.1	317,318	35.7	142.8
0	46	393,470	26.1	116.0	349,071	32.3	134.4	340,086	33.5	137.3	322,773	35.8	143.1
CCU-420	47	400,144	26.2	116.3	355,014	32.4	134.6	345,898	33.6	137.6	328,287	36.0	143.3
ככת	48	406,894	26.3	116.6	361,022	32.5	134.9	351,776	33.7	137.9	333,861	36.1	143.6
	49	413,720	26.4	116.9	367,098	32.6	135.2	357,719	33.8	138.1	339,496	36.2	143.8
	50	420,623	26.5	117.2	373,241	32.7	135.4	363,728	33.9	138.4	345,191	36.3	144.1
	45	451,634	30.0	115.7	394,491	37.2	134.1	384,667	38.6	137.1	365,513	41.4	142.8
0	46	459,226	30.1	116.0	401,168	37.3	134.4	391,203	38.7	137.3	371,711	41.5	143.1
CCU-480	47	466,898	30.2	116.3	407,914	37.5	134.6	397,808	38.9	137.6	377,972	41.7	143.3
	48	474,648	30.4	116.6	414,731	37.6	134.9	404,482	39.0	137.9	384,298	41.8	143.6
	49	482,478	30.5	116.9	421,617	37.8	135.2	411,224	39.1	138.1	390,687	42.0	143.8
	50	490,386	30.6	117.2	428,573	37.9	135.4	418,036	39.3	138.4	397,139	42.1	144.1
	45	498,446	34.0	116.4	434,733	42.3	134.8	423,642	43.9	137.7	401,620	47.2	143.4
0	46	506,741	34.1	116.8	442,090	42.4	135.0	430,856	44.0	138.0	408,471	47.4	143.7
CCU-540	47	515,113	34.3	117.1	449,513	42.6	135.3	438,135	44.2	138.3	415,383	47.5	144.0
	48	523,561	34.5	117.4	457,004	42.8	135.6	445,481	44.4	138.6	422,355	47.7	144.3
	49	532,086	34.7	117.8	464,563	43.0	135.9	452,893	44.6	138.9	429,389	47.9	144.6
	50	540,606	34.9	118.1	472,187	43.2	136.2	460,371	44.8	139.2	436,483	48.1	144.9
	45	553,878	38.4	118.5	482,062	47.8	136.5	469,506	49.6	139.5	443,958	53.5	145.2
0	46	562,967	38.6	118.8	490,173	48.0	136.9	477,472	49.9	139.8	451,524	53.7	145.5
009-NDD	47	572,130	38.8	119.2	498,348	48.2	137.2	485,500	50.1	140.1	459,146	54.0	145.8
	48	581,365	39.1	119.6	506,586	48.5	137.5	493,590	50.3	140.4	466,825	54.2	146.1
	49	590,671	39.3	119.9	514,887	48.7	137.8	501,743	50.5	140.7	474,560	54.4	146.5
	50	600,310	39.5	120.3	523,249	48.9	138.2	509,957	50.8	141.1	482,350	54.7	146.8

See note on page 10

PERFORMANCE DATA TABLES

						Conde	nser Amb	oient Temp	erature [º	·F]			
Model			95			115			118.4			125	
	SST (°F)	TC (Btu/hr)	PI (KW)	CT (°F)	TC (Btu/hr)	PI (KW)	CT (°F)	TC (Btu/hr)	PI (KW)	CT (°F)	TC (Btu/hr)	PI (KW)	CT (°F)
	45	607,450	40.1	114.1	524,400	49.7	132.7	509,709	51.6	135.7	481,399	55.2	141.4
0	46	617,756	40.2	114.4	533,329	49.9	132.9	518,431	51.8	135.9	489,644	55.4	141.6
099-NDD	47	628,182	40.4	114.6	542,355	50.1	133.1	527,248	51.9	136.2	497,975	55.6	141.8
SG	48	638,727	40.6	114.9	551,480	50.3	133.4	536,160	52.1	136.4	506,390	55.8	142.0
	49	649,393	40.8	115.2	560,703	50.5	133.6	545,168	52.3	136.6	514,893	56.0	142.3
	50	660,408	40.9	115.5	570,027	50.6	133.9	554,274	52.5	136.9	523,483	56.2	142.5
	45	665,663	46.1	115.3	577,935	56.7	133.8	563,643	58.7	136.8	534,345	62.9	142.4
0	46	676,433	46.3	115.6	587,358	56.9	134.0	572,878	59.0	137.0	543,064	63.1	142.7
-72(47	687,299	46.5	115.9	596,865	57.2	134.3	582,195	59.2	137.3	551,859	63.3	142.9
CCU-720	48	698,259	46.7	116.2	606,456	57.4	134.6	591,596	59.4	137.5	560,730	63.5	143.2
	49	709,313	47.0	116.5	616,131	57.6	134.8	601,080	59.6	137.8	569,677	63.8	143.5
	50	720,460	47.2	116.8	625,889	57.8	135.1	610,647	59.8	138.0	578,699	64.0	143.7
	45	719,642	50.1	117.5	623,874	61.8	135.7	607,018	64.0	138.7	573,973	68.5	144.4
0	46	731,657	50.3	117.9	634,324	62.0	136.0	617,235	64.2	139.0	583,628	68.8	144.6
-78(47	743,802	50.5	118.2	644,883	62.3	136.3	627,558	64.5	139.3	593,379	69.0	144.9
CCU-780	48	756,078	50.8	118.5	655,551	62.5	136.6	637,988	64.7	139.6	603,226	69.3	145.2
	49	768,486	51.0	118.9	666,330	62.7	136.9	648,526	65.0	139.8	613,170	69.6	145.5
	50	780,612	51.3	119.2	677,220	63.0	137.2	659,173	65.2	140.1	623,211	69.8	145.8
	45	780,782	51.9	113.7	680,304	64.3	132.4	662,747	66.7	135.4	629,009	71.5	141.1
0	46	794,097	52.1	114.0	691,952	64.6	132.6	674,141	66.9	135.7	639,822	71.7	141.4
-84(47	807,566	52.3	114.3	703,731	64.8	132.9	685,663	67.2	135.9	650,753	71.9	141.6
CCU-840	48	821,189	52.6	114.5	715,642	65.0	133.1	697,314	67.4	136.1	661,802	72.2	141.8
	49	834,966	52.8	114.8	727,686	65.2	133.3	709,094	67.6	136.4	672,971	72.4	142.1
	50	840,422	53.0	115.1	739,863	65.5	133.6	721,006	67.9	136.6	684,260	72.7	142.3
	45	903,268	59.9	115.7	788,982	74.4	134.1	769,334	77.2	137.1	731,027	82.7	142.8
	46	918,453	60.2	116.0	802,336	74.7	134.4	782,406	77.4	137.3	743,422	83.0	143.1
096-ᲘጋᲔ	47	933,796	60.4	116.3	815,829	75.0	134.6	795,616	77.7	137.6	755,945	83.3	143.3
E	48	949,297	60.7	116.6	829,461	75.2	134.9	808,963	78.0	137.9	768,595	83.7	143.6
	49	964,955	61.0	116.9	843,233	75.5	135.2	822,449	78.3	138.1	781,373	84.0	143.8
	50	980,772	61.3	117.2	857,146	75.8	135.4	836,072	78.6	138.4	794,279	84.3	144.1

See note on page 10

9

PERFORMANCE DATA TABLES | COMP | COMP

						Conde	nser Amb	ient Temp	erature [º	'F]			
Model			95			115			118.4			125	
	SST (°F)	TC (Btu/hr)	PI (KW)	CT (°F)	TC (Btu/hr)	PI (KW)	CT (°F)	TC (Btu/hr)	PI (KW)	CT (°F)	TC (Btu/hr)	PI (KW)	CT (°F)
	45	996,892	67.9	116.4	869,466	84.5	134.8	847,285	87.7	137.7	803,240	94.3	143.4
0	46	1,013,482	68.2	116.8	884,179	84.8	135.0	861,711	88.1	138.0	816,942	94.7	143.7
108	47	1,030,226	68.6	117.1	899,027	85.2	135.3	876,271	88.4	138.3	830,766	95.1	144.0
CCU-1080	48	1,047,122	69.0	117.4	914,009	85.6	135.6	890,962	88.8	138.6	844,711	95.5	144.3
Ō	49	1,064,171	69.3	117.8	929,125	85.9	135.9	905,787	89.1	138.9	858,778	95.8	144.6
	50	1,080,253	69.7	118.1	944,375	86.3	136.2	920,743	89.5	139.2	872,965	96.2	144.9
	45	1,107,757	76.8	118.5	964,123	95.6	136.5	939,013	99.3	139.5	887,917	107.1	145.2
0	46	1,125,935	77.2	118.8	980,346	96.0	136.9	954,943	99.7	139.8	903,048	107.5	145.5
CCU-1200	47	1,144,259	77.6	119.2	996,695	96.5	137.2	971,000	100.1	140.1	918,293	107.9	145.8
8	48	1,162,729	78.1	119.6	1,013,172	96.9	137.5	987,181	100.6	140.4	933,650	108.4	146.1
Ō	49	1,181,343	78.6	119.9	1,029,773	97.4	137.8	1,003,486	101.0	140.7	949,120	108.9	146.5
	50	1,200,099	79.1	120.3	1,046,499	97.9	138.2	1,019,914	101.5	141.1	964,700	109.4	146.8
	45	1,275,211	88.3	118.1	1,080,694	112.8	138.8	1,075,026	113.6	139.3	1,014,708	122.1	145.1
0	46	1,296,029	88.8	118.5	1,099,316	113.2	139.0	1,092,770	114.1	139.6	1,031,400	122.7	145.4
CCU-1380	47	1,317,017	89.3	118.8	1,118,105	113.6	139.3	1,110,645	114.6	139.9	1,048,205	123.2	145.7
8	48	1,338,172	89.8	119.2	1,137,062	114.0	139.5	1,128,650	115.1	140.2	1,065,121	123.8	146.0
Ö	49	1,359,494	90.3	119.5	1,156,187	114.5	139.7	1,146,785	115.7	140.5	1,082,148	124.3	146.3
	50	1,380,931	90.9	119.9	1,175,481	114.9	140.0	1,165,049	116.2	140.8	1,099,285	124.9	146.6
	45	1,392,586	102.3	120.7	1,184,716	129.2	140.4	1,173,163	130.8	141.4	1,104,215	140.3	147.2
0	46	1,414,826	102.9	121.1	1,204,472	129.7	140.7	1,191,752	131.4	141.7	1,121,508	141.0	147.5
CCU-1500	47	1,437,231	103.5	121.5	1,224,390	130.2	140.9	1,210,454	132.0	142.1	1,138,889	141.7	147.8
5	48	1,459,799	104.1	121.9	1,244,472	130.7	141.2	1,229,269	132.7	142.4	1,156,359	142.4	148.2
0	49	1,482,529	104.8	122.3	1,264,718	131.3	141.4	1,248,196	133.4	142.7	1,173,915	143.1	148.5
	50	1,504,317	105.4	122.7	1,285,130	131.8	141.7	1,267,236	134.1	143.1	1,191,558	143.9	148.9

LEGEND: O

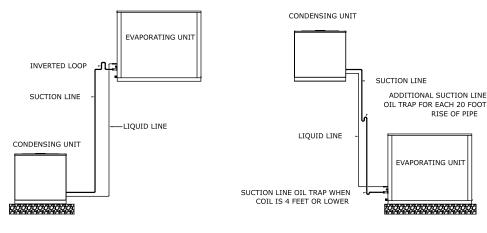
SST : Saturated Suction Temperature

: Total Cooling Capacity TC : Condensing Temperature CT : Compressor Power Input PΙ

Note:

Cooling capacities are based on 95°F Condensing air temperature and 50°F Saturated suction temperarture.
 Direct interpolation is permissible- Do not extrapolate.

10 www.coolex.com.kw



RECOMMENDED SUCTION AND LIQUID LINE SIZES OF THE STATE OF

				Refr	igerant Equiv	alent Length	- Ft.			
MODELS CCU	0-	25	26	26-50		51-75		100	101-120	
	Suction	Liquid	Suction	Liquid	Suction	Liquid	Suction	Liquid	Suction	Liquid
CCU-380	1-1/8	5/8	1-1/8	5/8	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8
CCU-420	1-1/8	5/8	1-1/8	5/8	1-1/8	5/8	1-3/8	7/8	1-3/8	7/8
CCU-480	1-1/8	5/8	1-1/8	5/8	1-1/8	5/8	1-3/8	7/8	1-3/8	7/8
CCU-540	1-1/8	5/8	1-1/8	5/8	1-1/8	5/8	1-3/8	7/8	1-3/8	7/8
CCU-600	1-1/8	5/8	1-1/8	5/8	1-1/8	5/8	1-3/8	7/8	1-3/8	7/8
CCU-660	1-1/8	5/8	1-1/8	5/8	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8
CCU-720	1-1/8	5/8	1-1/8	5/8	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8
CCU-780	1-3/8	7/8	1-1/8	5/8	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8
CCU-840	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8
CCU-960	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8
CCU-1080	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8	1-5/8	7/8
CCU-1200	1-3/8	7/8	1-3/8	7/8	1-3/8	7/8	1-5/8	7/8	1-5/8	7/8
CCU-1380	1-3/8	7/8	1-3/8	7/8	1-5/8	7/8	1-5/8	1-1/8	1-5/8	1-1/8
CCU-1500	1-5/8	7/8	1-5/8	7/8	1-5/8	7/8	1-5/8	1-1/8	1-5/8	1-1/8

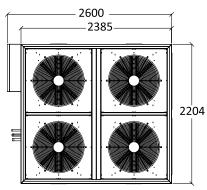
Note:

- 1. Pipe diameters are based on equivalent length of copper tubing sizes.
- 2. Pipe sizes are based on 2°F Temperature Drop.
- 3. If the condensing unit is above evaporating unit, Oil traps should be installed at equal intervals along the suction line.
- 4. If the evaporating unit is above condensing unit, Vapor line trap should be installed near the indoor unit to prevent liquid refrigerant migration to compressor.
- 5. Suction line sized based on maximum 5% capacity loss.
- 6. For different piping installation than mentioned above kindly consult Coolex.

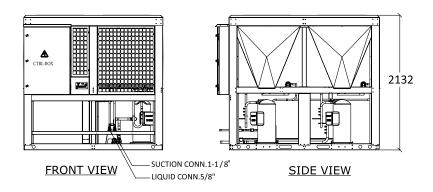
EVAPORATING UNIT ABOVE CONDENSING UNIT

CONDENSING UNIT ABOVE EVAPORATING UNIT

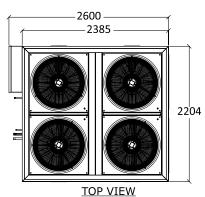
UNIT ELECTRICAL DATA OF OTHER CORP. CORP.

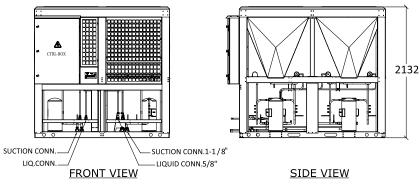

MODEL	POWER SUPPLY	VOLTAG	E RANGE		Condenser Fan Motor		Compressor 1		Compressor 2		МОСР
MODEL	(V-PH-HZ)	MIN.	MAX.	НР	FLA	RLA	LRA	RLA	LRA	- MCA	
CCU-380	415-3-50	374	457	1.5 (4)	3.0	27.9	173.0	27.9	173.0	74.8	100
CCU-420	415-3-50	374	457	1.5 (4)	3.0	17.9(2)	139.0	12.0(2)	101.0	76.5	90
CCU-480	415-3-50	374	457	1.5 (4)	3.0	17.9(2)	139.0	17.9(2)	139.0	88.5	100
CCU-540	415-3-50	374	457	2.0(4)	3.8	20.8(2)	144.0	17.9(2)	139.0	97.8	110
CCU-600	415-3-50	374	457	2.0(4)	3.8	20.8(2)	144.0	20.8(2)	144.0	103.6	110
CCU-660	415-3-50	374	457	1.5 (6)	3.0	27.9	173.0	24.3(3)	140.0	125.8	150
CCU-720	415-3-50	374	457	1.5 (6)	3.0	27.9(3)	173.0	24.3	173.0	133.0	150
CCU-780	415-3-50	374	457	2.0(6)	3.8	34.3	229.0	27.9(3)	173.0	149.4	175
CCU-840	415-3-50	374	457	1.5 (8)	3.0	34.3(2)	229.0	27.9(2)	173.0	157.0	175
CCU-960	415-3-50	374	457	1.5 (8)	3.0	34.3(2)	229.0	34.3(2)	229.0	169.8	200
CCU-1080	415-3-50	374	457	2.0(8)	3.8	42.1(2)	320.0	34.3(2)	229.0	193.7	225
CCU-1200	415-3-50	374	457	2.0(8)	3.8	42.1(2)	320.0	42.1(2)	320.0	209.3	225
CCU-1380	415-3-50	374	457	2.0(8)	3.8	60.7(2)	310.0	42.1(2)	320.0	251.2	300
CCU-1500	415-3-50	374	457	2.0(8)	3.8	60.7(2)	310.0	60.7(2)	310.0	288.4	300

LEGEND: 00 0000 0000 0000 0000 0000 0000

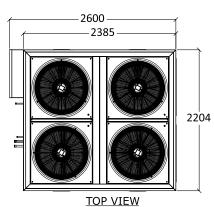

FLA - Full Load Amps HP - Horse Power LRA - Locked Rotor Amps RLA - Rated Load Amps MCA - Minimum Circuit Amps

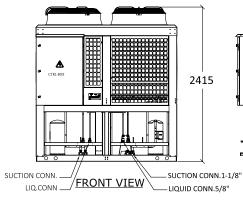
MOCP - Maximum Over Current Protection

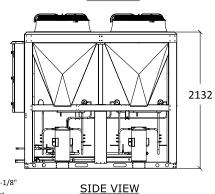

CCU-380 (ALL DIMENSIONS ARE IN MM)



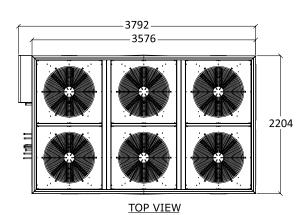
TOP VIEW

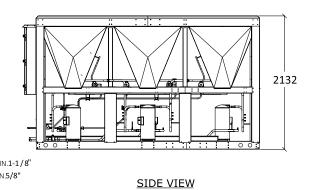

CCU-420/480 (ALL DIMENSIONS ARE IN MM)



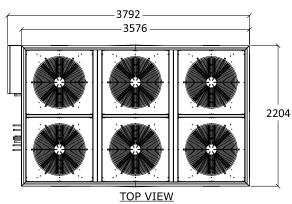


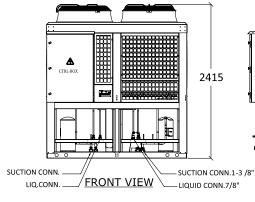
CCU-540/600

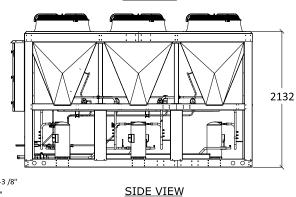

(ALL DIMENSIONS ARE IN MM)



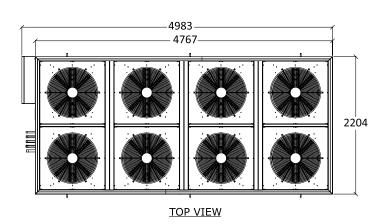
CCU-660/720 (ALL DIMENSIONS ARE IN MM)

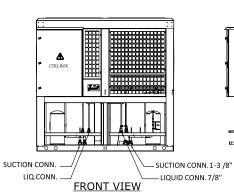

SUCTION CONN. SUCTION CONN.1-1/8"


FRONT VIEW



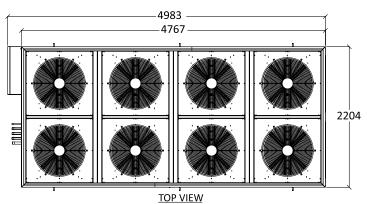
UNIT DIMENSIONS OF THE COMPANY OF TH

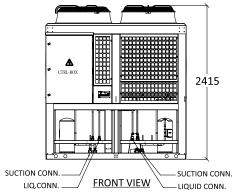

CCU-780 (ALL DIMENSIONS ARE IN MM)

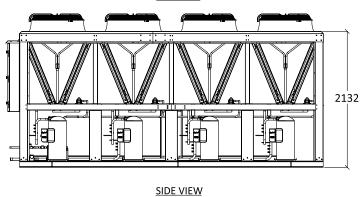


CCU-840/960 (ALL DIMENSIONS ARE IN MM)

2132


SIDE VIEW




CCU-1080/1200/1380/1500

(ALL DIMENSIONS ARE IN MM)

MODEL	SUCTION	LIQUID
CCU-1080	1-3/8"	7/8"
CCU-1200	1-3/8"	7/8"
CCU-1380	1-3/8"	7/8"
CCU-1500	1-5/8"	7/8"

INSTALLATION CLEARANCE OF SOME CORRESPONDENCE

FIGURE 1 CORNER WALL

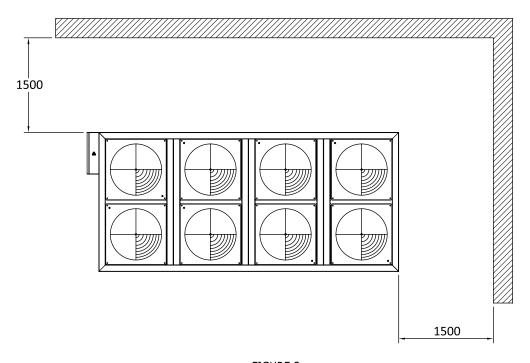
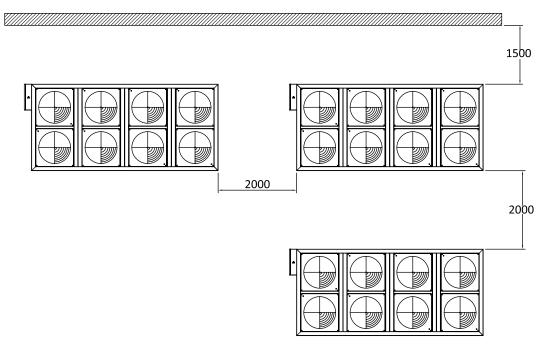



FIGURE 2 STRAIGHT WALL

Pit installations are not recommended where circulation of hot condenser air can take place and it will severely affect unit efficiency (EER) causing high pressure or fan motor temperature trips.

Note: All Dimensions are in Millimeters (mm)

RIGGING INSTRUCTIONS OF THE STATE OF THE STA

COOLEX Commercial Condensing Units are designed for overhead rigging only, for this purpose the base channel has been extended beyond the sides of the unit with rigging holes. Use a spreader frame above the unit to keep the cables vertical and away from the sides.

Run the cables to a central suspension point so that the angle from the horizontal is not less than 45°. As an added protection, put plywood sheets on the sides of the unit behind cables while rigging. Raise and set the unit carefully.

ATTENTION TO RIGGERS

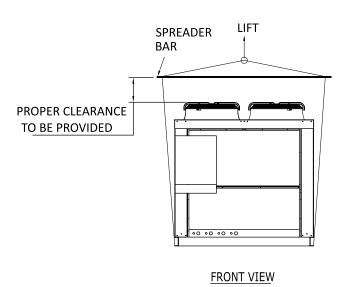
The positions of the rigging slings should be as per the below given drawings.

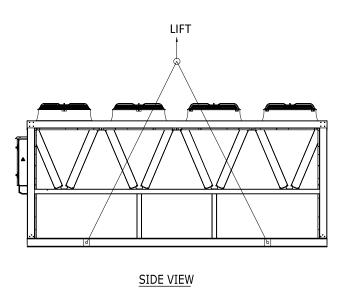
Lifting points are so provided in the unit as to evenly distribute the units load.

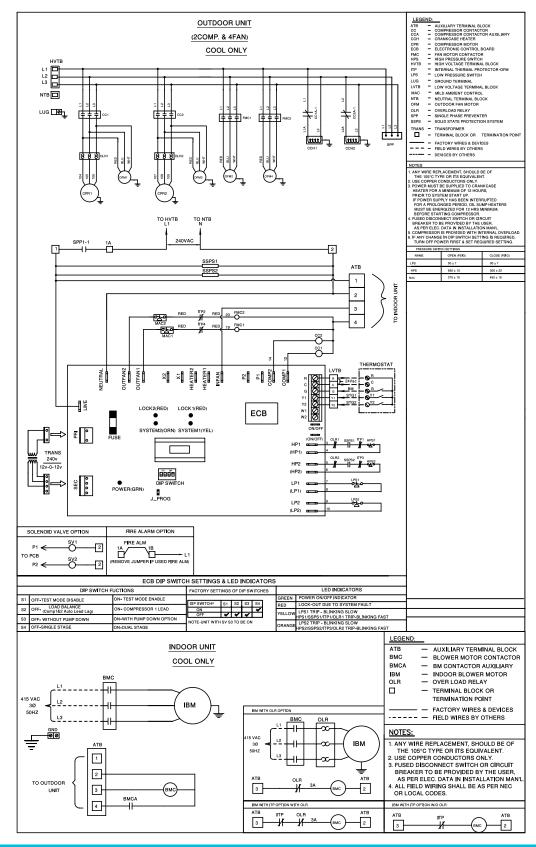
Center of gravity of the unit is not necessarily its center line.

Ensure that the center of gravity aligns with the main lifting pole before lifting the unit.

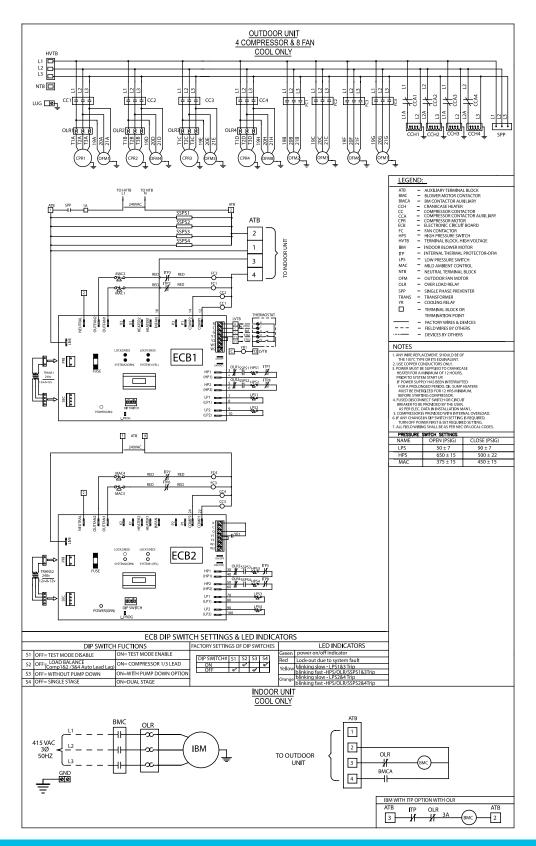
To avoid damage to the unit by the rigging slings, use spreader bars as shown below.

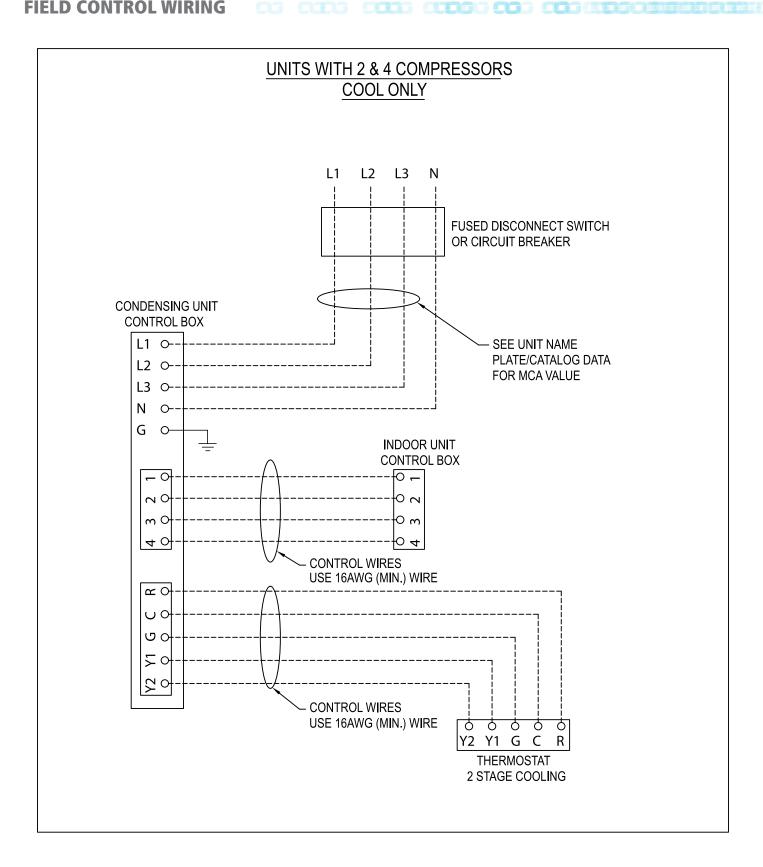

CAUTION


18

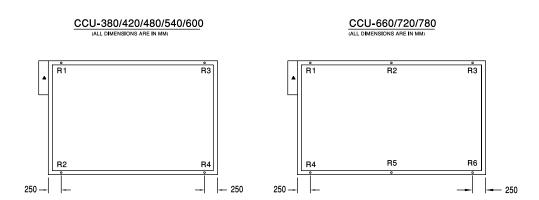

All panels should be in place when rigging.

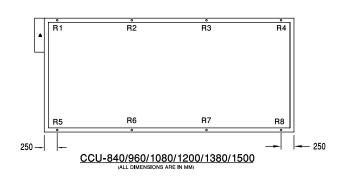
Care must be taken to avoid damage to the coils during handling.


Insert packing material between coils & slings as necessary.

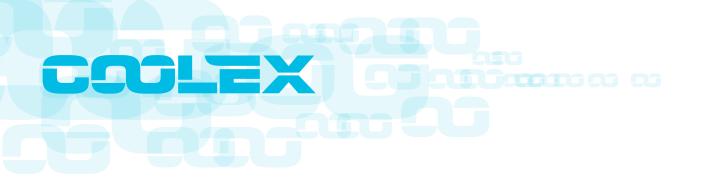


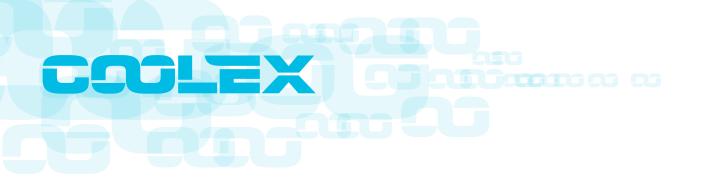
19




FIELD CONTROL WIRING

LOAD DISTRIBUTION OF DATE OF STATE OF S





			LOA	D DIST	RIBUTIO	ON (kg)			Total
MODEL	R1	R2	R3	R4	R5	R6	R7	R8	Weight
CCU-360	303	285	274	268	-	-	-	-	1130
CCU-420	335	315	302	298	-	-	-	-	1250
CCU-480	343	323	310	304	-	-	-	-	1280
CCU-540	348	327	315	309	-	-	-	-	1300
CCU-600	362	341	327	320	-	-	-	-	1350
CCU-660	312	304	290	297	285	273	-	-	1760
CCU-720	317	307	293	299	289	276	-	-	1780
CCU-780	329	319	305	308	301	287	-	-	1850
CCU-840	318	306	294	280	311	288	282	271	2350
CCU-960	338	325	313	300	331	306	300	288	2500
CCU-1080	345	332	318	307	337	312	306	293	2550
CCU-1200	358	344	332	318	351	324	318	305	2650
CCU-1380	378	364	350	335	371	343	336	322	2800
CCU-1500	392	377	363	349	384	355	348	334	2900

NOTES care care as care care care care care care care

COOLEX DISTRIBUTORS OF THE PROPERTY OF THE PRO

Sultanate of Oman

Al Noor Projects Engineering & Trading Company

Address: Third Floor, Oman House

P.O. Box: 1047, P.C: 114 Hay Al Mina - Muscat

Tel : +968 24709402/403
Fax : +968 24709401
Email : info@alnoorprojects.com
Email : gm@alnoorprojects.com

Website: www.alnoorprojects.com

United Arab Emirates UAE

Obaid Humaid Al-Tayer Engineering Division Al Tayer Group

Address: Dubai - UAE, PO Box 2623

Tel : +971 4 2011272 Fax : +971 4 2825008 Mobile : +971 50 3500747

Email: bkrishnan@altayer-eng.com

Website: www.altayer.com

Kingdom of Bahrain

Y.K. Almoayyed & Sons

Address: EHAD – Project Department, Sehla Workshop P.O. Box 143, Manama, Kingdom of Bahrain

Tel : +973 17 400 444, Extn. 205

Direct : +973 17 405 250 Fax : +973 17 400 388

Email: Pradeep@almoayyed.com.bh Email: anshul.bawa@almoayyed.com.bh

Website: www.almoayyed.com

Kingdom of Saudi Arabia KSA

Al-Etmad for Refrigeration and Air Conditioning Industries Company

Address: Al Qortobah Quartier, King Abdullah Road

Riyadh - KSA, P.O. Box 50467 Riyadh 11533

Tel : + 966 11 2447789 Fax : + 966 11 4958812 Mobile : + 966 560034240

Email: abunaif722@ksacoolex.com

Website: www.Coolex.com

Republic of Iraq

SWEER Company Limited

Website: www.sweerco.com

Address: Al Senak - Jumhuria Street - Baghdad-Iraq

P.O. Box: 8095
Tel : +964 1 8181196
Mobile : +964 7705 884444
Email : sweerco@yahoo.com

State of Qatar

Al Jaber for air conditioning & Refrigeration industries

Address: PO.Box 23546 Doha Tel : +974 44210963 Fax : +974 44448919 Mobile : +974 55610321 Mobile : +974 55843255

Email : Customercare@jaric-qatar.com

Website: www.jaric-qa.com

Iran

Tel

Egypt

Tel

Capital ICEBERG Limited Company

Address: No. 31, 3rd Floor, Aghdasieyeh Trade Center

Aghdasiyeh Street. Tehran – Iran : +98 (021) 26110510

Address: 4 Buildings Al-Noor - Sheraton Housings

Fax : +98 (021) 26110510

Mobile : +98 912 119 2961

Email : info@capitaliceberg.com

Email : saeed.s@capitaliceberg.com

Email : sara.s@capitaliceberg.com

Website : www.capitaliceberg.com

Total Group Egypt Company

Mobile: +20109966627

Mobile: +21201299444

Cairo - Egypt

Email : adel@coolex-eg.com

Email: ahmad@coolex-eg.com

: +202267240/837

Sudan

Abina For Advises And Engineering Work Company

Address: Katrena Street - East Qurashi Park

Sudan – Khartoum Tel : +249 574064 Fax : +249 574064

Mobile: +249 900900246/247/248/249/250/251/252

Email : maha1237@yahoo.com

Islamic Republic of Pakistan

AG TEK Pvt. Ltd.

Address: 179-S, Imperial Garden Paragon City

Lahore - Pakistan
Tel : +92-42-37187640-43
Fax : +92-42-37187644
Cell : +92-300-4745624
Mobile : +92-321-2280011
Email : info@agtek.com.pk
Email : coo@agtek.com.pk

Website: www.agtek.com.pk

Syrian Arab Republic

Team for Engineering & Trading co.

Address: Damascus - Kafer Souseh P.O.Box: 16311

Tel : +963 11 222 2996
Tel-Fax : +963 11 222 1125
Mobile : +963 93 322 6288
Mobile : +963 94 421 1146
Email : info@team-syr.net

Email : georgeyoussef@team-syr.net

Website: www.team-syr.net

.....

Global Air Conditioning And Trading Pvt Ltd

Address: SINAMANGAL-9, KATHMANDU-NEPAL

Tel : +977 9813388560

Email: ajay.sharma2852@gmail.com

Website: www.coolex-eg.com

Email :
Website:

Please contact Sales and Marketing Department
sales@ric.com.kw for specific information on the

Ref no.: CACF23-5-000

current design and specifications.

CENTRAL AIR CONDITIONING AND SPLIT UNIT

Coolex continuously works towards the improvement of its products. Hence, the design and specifications of the ordered product may vary without prior notice.

COOLEX is a subsidiary of the RIC Group